Business-insider.ru

Про деньги в эпоху кризиса
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Метод количественного анализа это

Количественный анализ. Химические методы анализа. Аналитическая химия

Количественный анализ выражается последовательностью экспериментальных методов, определяющих в образце исследуемого материала содержание (концентрации) отдельных составляющих и примесей. Его задача – определить количественное соотношение химсоединений, ионов, элементов, составляющих образцы исследуемых веществ.

Задачи

Качественный и количественный анализ являются разделами аналитической химии. В частности, последний решает различные вопросы современной науки и производства. Этой методикой определяют оптимальные условия проведения химико-технологических процессов, контролируют качество сырья, степень чистоты готовой продукции, в том числе и лекарственных препаратов, устанавливают содержание компонентов в смесях, связь между свойствами веществ.

Классификация

Методы количественного анализа подразделяют на:

  • физические;
  • химические (классические);
  • физико-химические.

Химический метод

Базируется на применении различных видов реакций, количественно происходящих в растворах, газах, телах и т. д. Количественный химический анализ подразделяют на:

  • Гравиметрический (весовой). Заключается в точном (строгом) определении массы анализируемого компонента в исследуемом веществе.
  • Титриметрический (объемный). Количественный состав исследуемой пробы определяют путем строгих измерений объема реагента известной концентрации (титранта), который взаимодействует в эквивалентных количествах с определяемым веществом.
  • Газовый анализ. Базируется на измерении объема газа, который образуется или поглощается в результате химической реакции.

Химический количественный анализ веществ считается классическим. Это наиболее разработанный метод анализа, который продолжает развиваться. Он точен, прост в исполнении, не требует спецаппаратуры. Но применение его иногда сопряжено с некоторыми трудностями при исследовании сложных смесей и сравнительно небольшой чертой чувствительности.

Физический метод

Это количественный анализ, базирующийся на измерении величин физических параметров исследуемых веществ или растворов, которые являются функцией их количественного состава. Подразделяется на:

  • Рефрактометрию (измерение величин показателя преломления).
  • Поляриметрию (измерение величин оптического вращения).
  • Флуориметрию (определение интенсивности флуоресценции) и другие

Физическим методам присущи экспрессность, низкий предел определения, объективность результатов, возможность автоматизации процесса. Но они не всегда специфичны, так как на физическую величину влияет не только концентрация исследуемого вещества, но и присутствие других веществ и примесей. Их применение часто требует использования сложной аппаратуры.

Физико-химические методы

Задачи количественного анализа – измерение величин физических параметров исследуемой системы, которые появляются или изменяются в результате проведения химических реакций. Эти методы характеризуются низким пределом обнаружения и скоростью исполнения, требуют применения определенных приборов.

Гравиметрический метод

Это старейшая и наиболее разработанная технология количественного анализа. По сути, аналитическая химия началась с гравиметрии. Комплекс действий позволяет точно измерять массу определяемого компонента, отделенного от других компонентов проверяемой системы в постоянной форме химического элемента.

Гравиметрия является фармакопейным методом, который отличается высокой точностью и воспроизводимостью результатов, простотой исполнения, однако трудоемок. Включает приемы:

  • осаждения;
  • отгонки;
  • выделения;
  • электрогравиметрию;
  • термогравиметрические методы.

Метод осаждения

Количественный анализ осаждения основан на химической реакции определяемого компонента с реагентом-осадителем с образованием малорастворимого соединения, которое отделяют, затем промывают и прокаливают (высушивают). На финише выделенный компонент взвешивают.

Например, при гравиметрическом определении ионов Ва 2+ в растворах солей как осадитель используют серную кислоту. В результате реакции образуется белый кристаллический осадок BaSO4 (осажденная форма). После прожарки этого осадка формируется так называемая гравиметрическая форма, полностью совпадающая с осажденной формой.

При определении ионов Са 2+ осадителем может быть оксалатная кислота. После аналитической обработки осадка осажденная форма (СаС2О4) превращается в гравиметрическую форму (СаО). Таким образом, осажденная форма может как совпадать, так и отличаться от гравиметрической формы по химической формуле.

Аналитическая химия требует высокоточных измерений. В гравиметрическом методе анализа используют особо точные весы как основной прибор.

  • Взвешивания при требуемой точности ±0,01 г проводят на аптечных (ручных) или технохимических весах.
  • Взвешивания при требуемой точности ±0,0001 г осуществляют на аналитических весах.
  • При точности ±0,00001 г – на микротерезах.

Техника взвешивания

Осуществляя количественный анализ, определение массы вещества на технохимических или технических весах проводят следующим образом: исследуемый предмет помещают на левую чашу весов, а уравновешивающие грузики – на правую. Процесс взвешивания заканчивают при установлении стрелки весов в среднем положении.

В процессе взвешивания на аптечных весах центральное кольцо удерживают левой рукой, локтем опираясь на лабораторный стол. Затухание коромысла во время взвешивания может быть ускорено легким прикосновением дна чаши весов к поверхности стола.

Аналитические весы монтируют в отдельных отведенных лабораторных помещениях (весовых комнатах) на специальных монолитных полках-подставках. Для предотвращения влияния колебаний воздуха, пыли и влаги весы защищают специальными стеклянными футлярами. Во время работы с аналитическими весами следует придерживаться следующих требований и правил:

  • перед каждым взвешиванием проверяют состояние весов и устанавливают нулевую точку;
  • взвешиваемые вещества помещают в тару (бюкс, часовое стекло, тигель, пробирку);
  • температуру веществ, подлежащих взвешиванию, доводят до температуры весов в весовой комнате в течение 20 минут;
  • весы не следует нагружать сверх установленных предельных нагрузок.

Этапы гравиметрии по методу осаждения

Гравиметрический качественный и количественный анализ включают следующие этапы:

  • расчета масс навески анализируемой пробы и объема осадителя;
  • взвешивания и растворения навески;
  • осаждения (получение осажденной формы определяемого компонента);
  • удаления осадков из маточного раствора;
  • промывания осадка;
  • высушивания или прокаливания осадка до постоянной массы;
  • взвешивания гравиметрической формы;
  • вычисления результатов анализа.

Выбор осадителя

При выборе осадителя – основы количественного анализа – учитывают возможное содержание анализируемого компонента в пробе. Для увеличения полноты удаления осадка используют умеренный избыток осадителя. Используемый осадитель должен обладать:

  • специфичностью, селективностью относительно определяемого иона;
  • летучестью, легко удаляться при высушивании или прокаливании гравиметрической формы.
Читать еще:  Анализ деятельности промышленных предприятий

Среди неорганических осадителей наиболее распространены растворы: HCL; Н2SO4; H3PO4; NaOH; AgNO3; BaCL2 и другие. Среди органических осадителей предпочтение отдается растворам диацетилдиоксима, 8-гидроксихинолина, оксалатной кислоте и другим, образующим с ионами металлов внутрикомплексные устойчивые соединения, обладающие преимуществами:

  • Комплексные соединения с металлами, как правило, имеют незначительную растворимость в воде, обеспечивая полноту осаждения ионов металла.
  • Адсорбционная способность внутрикомплексных осадков (молекулярная кристаллическая решетка) ниже адсорбционной способности неорганических осадков с ионным строением, что дает возможность получить чистый осадок.
  • Возможность селективного или специфического осаждения ионов металла в присутствии других катионов.
  • Благодаря относительно большой молекулярной массе гравиметрических форм уменьшается относительная ошибка определения (в противовес использованию неорганических осадителей с небольшой молярной массой).

Процесс осаждения

Это важнейший этап характеристики количественного анализа. При получении осажденной формы необходимо минимизировать расходы за счет растворимости осадка в маточном растворе, уменьшить процессы адсорбции, окклюзии, соосаждения. Требуется получить достаточно крупные частицы осадка, не проходящие через фильтрационные поры.

Требования к осажденной форме:

  • Компонент, который определяют, должен количественно переходить в осадок и соответствовать значению Ks≥10 -8 .
  • Осадок не должен содержать посторонних примесей и быть устойчивым относительно внешней среды.
  • Осажденная форма должна как можно полнее превращаться в гравиметрическую при высушивании или прокаливании исследуемого вещества.
  • Агрегатное состояние осадка должно соответствовать условиям его фильтрации и промывки.
  • Предпочтение отдают кристаллическим осадком, содержащим крупные частицы, имеющим меньшую абсорбционную способность. Они легче фильтруются, не забивая поры фильтра.

Получение кристаллического осадка

Условия получения оптимального кристаллического осадка:

  • Осаждения проводят в разбавленном растворе исследуемого вещества разведенным раствором осадителя.
  • Добавляют раствор осадителя медленно, каплями, при осторожном перемешивании.
  • Осаждения проводят в горячем растворе исследуемого вещества горячим растворителем.
  • Иногда осаждения проводят при наличии соединений (например, небольшого количества кислоты), которые незначительно повышают растворимость осадка, но не образуют с ним растворимых комплексных соединений.
  • Осадок оставляют в исходном растворе на некоторое время, в течение которого происходит «вызревание осадка».
  • В случаях, когда осажденная форма образуется в виде аморфного осадка, его пытаются получить гуще для упрощения фильтрации.

Получение аморфного осадка

Условия получения оптимального аморфного осадка:

  • К горячему концентрированному раствору исследуемого вещества добавляют концентрированный горячий раствор осадителя, что способствует коагуляции частиц. Осадок становится гуще.
  • Добавляют осадитель быстро.
  • При необходимости в исследуемый раствор вводят коагулянт – электролит.

Фильтрация

Методы количественного анализа включают такой важный этап, как фильтрация. Фильтрование и промывание осадков проводят, используя или стеклянные фильтры, или бумажные, не содержащие золы. Бумажные фильтры различны по плотности и размерам пор. Плотные фильтры маркируются голубой лентой, менее плотные – черной и красной. Диаметр бумажных фильтров, не содержащих золы, 6-11 см. Перед фильтрацией сливают прозрачный раствор, находящийся над осадком.

Электрогравиметрия

Количественный анализ может осуществляться методом электрогравиметрии. Исследуемый препарат удаляют (чаще всего из растворов) в процессе электролиза на одном из электродов. После окончания реакции электрод промывают, высушивают и взвешивают. По увеличению массы электрода определяют массу вещества, образовавшегося на электроде. Так анализируют сплав золота и меди. После отделения золота в растворе определяют ионы меди, скапливаемые на электроде.

Термогравиметрический метод

Осуществляется измерением массы вещества во время его непрерывного нагрева в определенном интервале температур. Изменения фиксируются специальным устройством – дериватографом. Оно оборудовано термотерезами непрерывного взвешивания, электрической печью для нагрева исследуемого образца, термопарой для измерения температур, эталоном и самописцем непрерывного действия. Изменение массы образца автоматически фиксируется в виде термогравиграмы (дериватограмы) – кривой изменения массы, построенной в координатах:

  • время (или температура);
  • потеря массы.

Вывод

Результаты количественного анализа должны быть точными, правильными и воспроизводимыми. С этой целью используют соответствующие аналитические реакции или физические свойства вещества, правильно выполняют все аналитические операции и применяют надежные способы измерения результатов анализа. Во время выполнения любого количественного определения обязательно должна проводиться оценка достоверности результатов.

Классификация методов количественного анализа. Основные этапы количественного анализа

Количественный анализ — совокупность методов аналитической химии, задачей которых является определение количественного содержания отдельных составных частей в исследуемом веществе.

В зависимости от объекта исследования различают неорганический и органический анализ. В свою очередь их разделяют на элементный анализ, задача которого — установить, в каком количестве содержатся элементы в анализируемом объекте, на молекулярный и функциональный анализы, дающие ответ о количественном содержании радикалов, соединений, а также функциональных групп атомов в анализируемом объекте.

Методы количественного анализа подразделяются на химические, физико-химические и физические. К классическим химическим методам количественного анализа относятся гравиметрический и объёмный анализ.

Наряду с классическими химическими методами широко распространены физические и физико-химические (инструментальные) методы, основанные на измерении оптических, электрических, адсорбционных, каталитических и других характеристик анализируемых веществ, зависящих от их количества (концентрации). Обычно эти методы делят на следующие группы: электрохимические (кондуктометрия, полярография, потенциометрия и др.); спектральные, или оптические (эмиссионный и абсорбционный спектральный анализ, фотометрия, люминесцентный анализ и др.); рентгеновские; хроматографические; радиометрические; масс-спектрометрические. Перечисленные методы, уступая химическим в точности, существенно превосходят их по чувствительности, избирательности и скорости выполнения.

Читать еще:  Тематический анализ это

В данном курсе будут рассмотрены только классические химические методы количественного анализа.

Гравиметрический анализ основан на точном измерении массы определяемого компонента в чистом виде или в виде его соединения. Объёмный анализ включает титриметрический объёмный анализ — методы измерения объёма раствора реагента с точно известной концентрацией, израсходованного на реакцию с анализируемым веществом, и газовый объёмный анализ — методы измерения объёма анализируемых газообразных продуктов.

В ходе количественного анализа можно выделить следующие основные этапы.

1. Отбор, усреднение пробы и взятие навески.Отбор пробы часто определяет общую погрешность анализа и делает бессмысленным применение высокоточных методов. Цель пробоотбора – получить относительно небольшое количество исходного вещества, в котором количественное содержание всех компонентов должно быть равно количественному содержанию их во всей массе анализируемого вещества. Первичная проба отбирается непосредственно из анализируемого объекта путем объединения необходимого числа точечных проб. Способы отбора пробы определяются следующими факторами: агрегатное состояние анализируемого объекта (газ, жидкость, твердое вещество); неоднородность анализируемого материала; требуемая точность оценки содержания компонента по всей массе анализируемого объекта (физиологически активный компонент в лекарстве – бόльшая точность, чем компонент в руде для оценки рентабельности месторождения), возможность изменения состава объекта во времени. Жидкие и газообразные материалы, как правило, однородны, и их пробы уже являются усредненными. Твердые материалы неоднородны по объему, поэтому для их анализа отбирают части вещества из разных зон исследуемого материала. Первичная проба достаточно большая – обычно 1-50 кг, а для некоторых объектов (например, для руды) составляет 0,5-5 т.

Из первичной пробы путем ее сокращения отбирают среднюю (представительную) пробу (обычно от 25 г до 1 кг). Для этого первичную пробу измельчают, перемешивают и усредняют по составу, например, квартованием. При квартовании измельченный материал рассыпают ровным слоем в виде квадрата (или круга), делят на четыре сектора, содержимое двух противоположных секторов отбрасывают, а двух остальных соединяют вместе. Операцию квартования повторяют многократно, пока не будет получено необходимое количество средней пробы.

Из полученного таким образом однородного материала берут навески для анализа, одну часть сохраняют для возможных арбитражных анализов (контрольная проба), другую – непосредственно используют для анализа (анализируемая проба).

Часть анализируемой пробы с точно измеренной на аналитических весах массой называют навеской.Анализируемая проба должна быть достаточно большой, чтобы получить несколько навесок.

2. Разложение (вскрытие) пробы.Этот этап заключается в переводе анализируемой пробы в удобное для анализа агрегатное состояние или соединение. Для перевода пробы в раствор в химических методах ее непосредственно обрабатывают жидкими растворителями (водой, кислотами, щелочами) или после разрушения пробы (путем прокаливания, сожжения, сплавления или спекания) переводят ее в соединения, способные растворяться.

3. Разделение, выделение определяемого компонента и его концентрирование. Так как большинство аналитических методов недостаточно селективно, используют методы разделения анализируемой смеси или выделения из нее определяемого вещества. В случае, когда концентрация определяемого вещества меньше предела обнаружения данного метода или меньше нижней границы его рабочего диапазона, то применяют концентрирование определяемого вещества. Для разделения, выделения и концентрирования используют химические (маскирование, осаждение и соосаждение), физические (методы испарения: отгонку, перегонку (дистилляцию), возгонку (сублимацию) и др.) и физико-химические методы (экстракция, сорбция, ионный обмен, хроматография и различные электрохимические методы, например электролиз, электрофорез, электродиализ и др.).

4. Проведение количественного определения. Все предварительные стадии анализа должны обеспечить получение достоверного результата при проведении анализа. Выбор метода анализа должен основываться на таких показателях, как скорость, удобство, правильность, наличие подходящего оборудования, число анализов, размер анализируемой пробы, содержание определяемого компонента. Сопоставляя чувствительность различных методов и оценивая примерное содержание компонента в образце, химик выбирает тот или иной метод анализа. Например, для определения натрия в силикатных породах используют гравиметрический метод, позволяющий определять миллиграммовые и более высокие количества натрия; для определения микрограммовых количеств того же элемента в растениях и биологических объектах – метод пламенной фотометрии; для определения натрия в воде особой чистоты (нано- и пикограммовые количества) – метод лазерной спектроскопии.

5. Расчеты результатов анализа и оценка результатов измерения — заключительная стадия аналитического процесса. После вычисления результатов анализа важно оценить их достоверность, учитывая правильность использованного метода и статистически обрабатывая числовые данные.

Контрольные вопросы

1. В чем состоит задача количественного анализа?

2. Перечислите методы количественного анализа.

3. Что такое гравиметрический анализ?

4. В чем сущность титриметрического анализа?

5. Перечислите основные этапы анализа и охарактеризуйте их.

6. Как проводят отбор средней пробы? Что такое квартование пробы?

7. Что такое навеска?

8. Какие приемы используют для вскрытия пробы и выделения из нее определяемого компонента?

Список рекомендуемой литературы

1. Васильев В.П. Аналитическая химия. Кн. 1. Титриметрические и гравиметрический методы анализа. — М.: Дрофа, 2005. — С. 16 – 24.

Задачи и методы количественного анализа

Задачей количественного анализа является определение количественного содержания отдельных составных ча­стей в исследуемом веществе или в смеси. Результаты количественного определения выражают обычно в про­центах. Количественный анализ используется в биоло­гии, физиологии, медицине, биохимии, химии пищевых продуктов и т. д.

Читать еще:  Анализ основных технико экономических показателей

Все методы количественного анализа можно разделить на три основные группы.

1. Гравиметрический (весовой) анализ. Гравиметрическим анализом называют определение количества компонента (элемента или иона) по массе вещества, полученного в результате анализа. В методах этой группы определяемую часть анализируемого вещества выделяют в чистом виде или в виде соединения известного состава, массу которого определяют.

Например, чтобы определить количество бария в его соединениях, ион Ва 2+ осаждают при помощи разбав­ленной серной кислоты:

Осадок BaS04 фильтруют, промывают, прокаливают и точно взвешивают. Зная массу осадка BaS04 и его фор­мулу, вычисляют, сколько в нем содержится бария. Гра­виметрический метод дает результаты высокой точности, но он очень трудоемок.

2. Титриметрический (объемный) анализ. Титриметрический анализ основан на точном измерении количества реактива, затраченного на реакцию с определяемым
компонентом. Реактив берется в виде раствора определенной концентрации — титрованный раствор. Момент,
когда реактив будет прибавлен в количестве, эквивалентном содержанию определяемого компонента, т. е. момент окончания реакции определяется различными способами. При титровании приливают количество реактива, эквивалентное количеству определяемого вещества. Зная объем и точную концентрацию раствора, пошедшего на реакцию с определяемым веществом, рассчитывают количество определяемого вещества.

Титриметрический анализ дает менее точные результаты, чем гравиметрический, но важным его преимуществом является большая скорость выполнения анализа. В зависимости от типа реакций, протекающих в процессе титрования, титриметрический анализ делят на три группы: методы кислотно-основного титрования, методы редоксиметрии и методы осаждения и комплексообра-зования.

3. Методы фотометрии. В этом методе количество вещества определяют по интенсивности окраски раствора. Для этого используют так называемые цветные реакции, т. е. реакции, сопровождающиеся изменением окраски раствора. Например, при определении количества железа используется реакция

FeCl3 + 3KSCN 7—Fe(SCN)3 + 3KCI,

приводящая к образованию раствора красного цвета. Оценку интенсивности окраски раствора производят визуально или с помощью соответствующих приборов.

Иногда определяемый компонент превращают в малорастворимое соединение и о содержании определяемого вещества судят по интенсивности помутнения раствора. Метод, основанный на этом принципе, называют нефелометрией. Методы фотометрии и нефелометрии применяются для определения компонентов, входящих в состав анализируемого вещества в очень малых количествах. Точность этого метода ниже, чем гравиметрического или титриметрического.

Кроме этих методов, имеются еще другие: газовый анализ, спектральный анализ, электрохимический и хро-матографический методы. В данном учебнике эти методы не рассматриваются.

Все методы количественного анализа подразделяются на химические и физико-химические. К химическим методам относятся гравиметрический, титриметрический и газовый анализ, к физико-химическим — фотометрия и нефелометрия, электрохимический, спектральный, хро-.матографический методы анализа

В количественном анализе различают методы макро-, микро- и полумикрометод. В настоящем учебнике рас­сматривается только макрометод. При выполнении макроопределений определяются сравнительно большие (0,01—0,1 г) количества вещества. Исключение состав­ляют фотометрические и нефелометрические методы, при которых количество определяемого вещества состав­ляет доли миллиграмма.

Метод количественного анализа это

Этот раздел не завершён.

Активационный анализ

См. также

Литература

Wikimedia Foundation . 2010 .

Смотреть что такое «Количественный анализ (химия)» в других словарях:

Количественный анализ — совокупность химических, физико химических и физических методов определения количественного соотношения компонентов, входящих в состав анализируемого вещества. Наряду с качественным анализом К. а. является одним из основных разделов… … Большая советская энциклопедия

Качественный анализ (химия) — Качественный анализ совокупность химических, физико химических и физических методов, применяемых для обнаружения элементов, радикалов и соединений, входящих в состав анализируемого вещества или смеси веществ. В качественном анализе используют… … Википедия

Химия почв — Химия почв это раздел почвоведения, изучающий химические основы почвообразования и плодородия почв. Основой для решения этих вопросов служит исследование состава, свойств почв и протекающих в почвах процессов на ионно молекулярном и… … Википедия

Химия одноуглеродных молекул — (С1 химия) раздел химии, изучающей различные классы веществ, в состав молекулы которых входит только один атом углерода. Как отдельная отрасль знаний С1 химия появляется с развитием перспективных технологий получения углеродсодержащего сырья,… … Википедия

ХИМИЯ — ХИМИЯ, наука о веществах, их превращениях, взаимодействии и о происходящих при этом явлениях. Выяснением основных понятий, к рыми оперирует X., как напр, атом, молекула, элемент, простое тело, реакция и др., учением о молекулярных, атомных и… … Большая медицинская энциклопедия

Анализ металлов и сплавов — решает аналитическими методами задачу определения элементного состава металлов и их сплавов. Главная цель проверка сорта сплава или типа и композиционный анализ различных сплавов (количественный анализ). Методы: волнодисперсионный анализ,… … Википедия

Химия — У этого термина существуют и другие значения, см. Химия (значения). Химия (от араб. کيمياء‎‎, произошедшего, предположительно, от египетского слова km.t (чёрный), откуда возникло также название Египта, чернозёма и свинца «черная… … Википедия

Химия окружающей среды — Не следует путать с Экологическая химия. Химия окружающей среды раздел химии, изучающий химические превращения, происходящие в окружающей природной среде. Основные сведения Химия окружающей среды включает в себя более узкие разделы химии,… … Википедия

Химия полимеров — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия

Анализ химический — см. Аналитическая химия, Качественный анализ, Количественный анализ … Большая советская энциклопедия

Ссылка на основную публикацию
Adblock
detector