Business-insider.ru

Про деньги в эпоху кризиса
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ковариационный анализ это

Ковариационный анализ

Основной задачей ковариационного анализа (так же как и обычного дисперсионного анализа) является проверка влияния качественного или количественного фактора на отклик. Однако здесь при каждом измерении вместе со значением отклика регистрируются значения одной или нескольких сопутствующих переменных (количественных со-факторов), которые также могут оказывать влияние на отклик, но это влияние желательно исключить при проверке основного факторного эффекта, то есть требуется рафинировать основной эффект от влияния сопутствующих переменных.

Фиксированные ковариаты.Предположим, что сравниваются математические навыки двух групп студентов, которые обучались по двум различным учебникам. Предположим также, что имеются дополнительные данные о коэффициенте интеллекта (IQ) каждого студента. Можно предположить, что коэффициент интеллекта связан с математическими навыками, и использовать эту информацию. Для каждой из двух групп студентов можно вычислить коэффициент корреляции между IQ и математическими навыками. Используя этот коэффициент корреляции, можно выделить долю дисперсии в группах, объясняемую IQ и необъясняемую долю дисперсии. Оставшаяся доля дисперсии используется при проведении анализа как дисперсия ошибки. Если имеется корреляция между IQ и математическими навыками, то таким образом можно существенно уменьшить дисперсию ошибки SS/(n-1).

Влияние ковариат на F критерий. F критерий оценивает статистическую значимость различия средних в группах, при этом вычисляется отношение межгрупповой дисперсии (MSошибка) к дисперсии ошибок (MSошибка). Если MSошибка уменьшается, например, при учете фактора IQ, значение F увеличивается.

Множество ковариат. Рассуждения, использованные выше для одной ковариаты (IQ), легко распространяются на несколько ковариат. Например, кроме IQ, можно включить измерение мотивации, пространственного мышления и т.д. Вместо обычного коэффициента корреляции при этом используется множественный коэффициент корреляции (см. Множественная регрессия).

Случай, когда значение F-критерия уменьшается. Иногда введение ковариат в план эксперимента уменьшает значение F-критерия. Обычно это указывает на то, что ковариаты коррелированы не только с зависимой переменной (например, математическими навыками), но и с факторами (например, с разными учебниками). Предположим, что IQ измеряется в конце семестра, после почти годового обучения двух групп студентов по двум разным учебникам. Хотя студенты разбивались на группы случайным образом, может оказаться, что различие учебников настолько велико, что и IQ и математические навыки в разных группах будут сильно различаться. В этом случае, ковариаты не только уменьшают дисперсию ошибок, но и межгрупповую дисперсию. Другими словами, после контроля за разностью IQ в разных группах, разность в математических навыках уже будет несущественной. Ту же мысль можно выразить иначе: после «исключения» влияния IQ, неумышленно исключается и влияние учебника на развитие математических навыков.

Скорректированные средние. Когда ковариата влияет на межгрупповой фактор, следует вычислять скорректированные средние, т.е. такие средние, которые получаются после удаления всех оценок ковариат.

Взаимодействие между ковариатами и факторами. Также как исследуется взаимодействие между факторами, можно исследовать взаимодействия между ковариатами и группами факторов. Предположим, что один из учебников особенно подходит для «умных» студентов. Второй учебник для «умных» студентов скушен, а для менее умных студентов этот же учебник труден. В результате имеется положительная корреляция между IQ и результатом обучения в первой группе (более «умные» студенты, лучше результат) и нулевая или небольшая отрицательная корреляция во второй группе (чем умнее студент, тем менее вероятно приобретение математических навыков из второго учебника). В некоторых исследованиях эта ситуация обсуждается как пример нарушения предположений ковариационного анализа (см. Предположения и последствия их нарушения). Однако так как Дисперсионный анализ использует самые общие способы ковариационного анализа, можно, в частности, оценить статистическую значимость взаимодействия между факторами и ковариатами.

Переменные ковариаты. В то время как фиксированные ковариаты обсуждаются в учебниках достаточно часто, переменные ковариаты упоминаются намного реже. Обычно, при проведении экспериментов с повторными измерениями, нас интересуют различия в измерениях одних и тех же величин в разные моменты времени. А именно, нас интересует значимость этих различий. Если одновременно с измерениями зависимых переменных проводится измерение ковариат, можно вычислить корреляцию между ковариатой и зависимой переменной. Например, можно изучать интерес к математике и математические навыки в начале и в конце семестра. Интересно было бы проверить, скоррелированы ли между собой изменения в интересе к математике с изменением математических навыков.

§ 5.5. Многомерные планы: Многомерный дисперсионный и ковариационный анализ

Межгрупповые планы. Все рассматриваемые ранее примеры включали только одну зависимую переменную. Когда одновременно имеется несколько зависимых переменных, возрастает лишь сложность вычислений, а содержание и основные принципы не меняются. Например, проводится исследование двух различных учебников. При этом изучаются успехи студентов в изучении физики и математики. В этом случае имеются две зависимые переменные и нужно выяснить, как влияют на них одновременно два разных учебника. Для этого можно воспользоваться многомерным дисперсионным анализом. Вместо одномерного F критерия, используется многомерный F критерий (лямбда-критерий Уилкса), основанный на сравнении ковариационной матрицы ошибок и межгрупповой ковариационной матрицы. Если зависимые переменные скоррелированы между собой, то эта корреляция должна учитываться при вычислении критерия значимости. Очевидно, если одно и то же измерение повторяется дважды, то ничего нового получить при этом нельзя. Если к имеющемуся измерению добавляется коррелированное с ним измерение, то получается некоторая новая информация, но при этом новая переменная содержит избыточную информацию, которая отражается в ковариации между переменными.

Читать еще:  Анализ бюджетных отклонений

Интерпретация результатов. Если общий многомерный критерий значим, можно заключить, что соответствующий эффект (например, тип учебника) значим. Однако встают следующие вопросы. Влияет ли тип учебника на улучшение только математических навыков, только физических навыков, или одновременно на улучшение тех и других навыков. В действительности, после получения значимого многомерного критерия, для отдельного главного эффекта или взаимодействия исследуются одномерные F-критерии. Другими словами, отдельно исследуются зависимые переменные, которые вносят вклад в значимость многомерного критерия.

Планы с повторными измерениями. Если измеряются математические и физические навыки студентов в начале семестра и в конце семестра, то это и есть повторные измерения. Изучение критерия значимости в таких планах это логическое развитие одномерного случая. Заметим, что методы многомерного дисперсионного анализа обычно также используются для исследования значимости одномерных факторов повторных измерений, имеющих более чем два уровня.

Суммы значений переменной и дисперсионный анализ. При использовании одномерного и многомерного дисперсионного анализа часто приходят в затруднение, получая разные результаты при применении многомерного дисперсионного анализа, например, для трех переменных, и при применении одномерного дисперсионного анализа к сумме этих трех переменных, как к одной переменной. Идея суммирования переменных состоит в том, что каждая переменная содержит в себе некоторую истинную переменную, которая и исследуется, а также случайную ошибку измерения. Поэтому при усреднении значений переменных, ошибка измерения будет ближе к 0 для всех измерений и усредненное значений будет более надежным. На самом деле, в этом случае применение дисперсионного анализа к сумме переменных разумно и является мощным методом. Однако, если зависимые переменные по своей природе многомерны, то суммирование неуместно. Например, пусть зависимые переменные состоят из четырех показателей успеха в обществе. Каждый показатель характеризует совершенно независимую сторону человеческой деятельности (например, профессиональный успех, преуспевание в бизнесе, семейное благополучие и т.д.). Сложение этих переменных подобно сложению яблока и апельсина. Сумма этих переменных не будет подходящим одномерным показателем. Поэтому с такими данными нужно обходиться как с многомерными показателями в многомерном дисперсионном анализе.

Дата добавления: 2014-12-26 ; Просмотров: 1393 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Ковариационный анализ (ANCOVA)

17.4. Ковариационный анализ (ANCOVA)

Если в дисперсионном анализе используется независимая переменная, относящаяся к интервальной шкале или к шкале отношений (метрической), то говорят не о факторе, а о ковариации. Поясним значение такой «контрольной переменной» на следующем примере.

Двадцать испытуемых с избыточным весом (11 мужчин и 9 женщин) изъявили желание похудеть и для этого взялись следовать определённой диете. Одиннадцать испытуемых дополнительно вступили в некоторое общество для желающих похудеть, в котором процесс похудения подстегивается при помощи специальных стимулирующих лекций и других мотивирующих методов. Для всех тестируемых были сняты показатели роста (в см) и веса (в кг) до и после прохождения курса. Далее при помощи расчета индекса Брока (Вrоса) фактический вес был отнесен к нормальному весу, где нормальный вес в килограммах мы можем получить, если от роста, взятого в сантиметрах, отнимем 100:

Так индекс Брока, равный 100 процентам означает нормальный вес, превышающий 100 процентов — избыточный вес.

Переменная beh указывает на группу (1 = диета, 2 = диета + общество для желающих похудеть), а переменная g указывает на пол (1 = мужской, 2 = женский). К остальным переменным, участвующими в расчётах, относятся: gr (Рост), gew (Вес до лечения), gewl (Вес в конце лечения), ЬrосаО (Индекс Брока до лечения), brocaab (Уменьшение индекса Брока). Последняя переменная должна служить мерой эффективности диеты.

Мы хотим провести двухфакторный дисперсионный анализ с использованием переменных beh и g в качестве независимых переменных (факторов) и переменной brocaab в качестве зависимой переменной.

Выберите в меню Analyze (Анализ) ► General Linear Model (Общая линейная модель) ► Univariate. (Одномерная)

В появившемся диалоговом окне переменной brocaab присвойте статус зависимой переменной, а переменным beh и g — статус постоянных факторов.

После прохождения кнопки Options. (Опции) активируйте вывод оценки пределов средних для факторов beh и g.

Начните расчёт нажатием ОК.

Для группы, члены которой дополнительно вступили в общество для желающих похудеть, средний показатель снижения индекса Брока равен 11,558, в то время как для группы, члены которой худеют только при помощи одной диеты, снижение в среднем составляет 5,178. Дисперсионный анализ дает следующие результаты:

Читать еще:  При анализе отклонений от плана

Tests of Between-Subjects Effects (Тесты межсубъектных эффектов)

Source (Источник)Type III Sum of Squares (Сумма квадратов III типа)DfMean Square (Средний квадрат)FSig. (Значимость)
Corrected Model (Подправленная модель)209,636 a369,87912,836,000
Intercept (Отрезок)1371,87711371,877252,002,000
ВЕН199,4141199,41436,631,000
G1.998E-0311.998E-03,000,985
BEH*G3,02613,026,556,467
Error (Ошибка)87,103165,4441
Total (Сумма)1805,66820
Corrected Total (Подправленная суммарная вариация)296,73819

a R Squared = ,706 (Adjusted R Squared = ,651) (R — квадрат = 0,706 (смещённый R-квадрат = 0,651))

Получается очень значимая разница между двумя группами (р a457,84213,273,000Intercept (Отрезок)8,56818,5681,966,181BRACAO21,734121,7344,987,041ВЕН11.077111,0772,542,132G3,83013,830,879,363ВЕН * G4,64414,6441,066,318Error (Ошибка)65,368154,358Total (Сумма)1805,66820Corrected Total (Подправленная суммарная вариация)296,73819

a R Squared = ,780 (Adjusted R Squared = ,721) (R — квадрат = 0,780 (смещённый R-квадрат = 0,721))

В результате, как и ожидалось, обнаружилось сильное влияние ковариации brоса0 (р = 0,041). Это ведёт к тому, что в обеих группах пропадает значимый эффект (р = 0,132). Из-за сильно отличающихся исходных показателей, доказательство значимого воздействия дополнительного членства в обществе для желающих похудеть является невозможным.

КОВАРИАЦИОННЫЙ АНАЛИЗ

— совокупность методов математич. статистики, относящихся к анализу моделей зависимости среднего значения нек-рой случайной величины У от набора неколичественных факторов Fи, одновременно, от набора количественных факторов х. По отношению к У переменные хназ. сопутствующими; факторы Fзадают сочетания условий качественной природы, при к-рых получены наблюдения У и х, и описываются с помощью так наз. индикаторных переменных; среди сопутствующих и индикаторных переменных могут быть как случайные, так и не случайные (контролируемые в эксперименте); если случайная величина У является вектором, то говорят о многомерном К. а.

Основные теоретические и прикладные проблемы К. а. относятся к линейным моделям. В частности, если анализируется схема из пнаблюдений Y1. Yn с рсопутствующими переменными и kвозможными типами условий эксперимента, то линейная модель соответствующего К. а. задается уравнениями

где индикаторные переменные fij равны 1, если j-e условие эксперимента имело место при наблюдении У,-, и равны 0 в ином случае; коэффициенты qj определяют эффект влияния j-го условия; xi (s) — значение сопутствующей переменной х (s) при к-рой получено наблюдение Yi, i=1. n; s=1. p; bs(Fi)- значения соответствующих коэффициентов регрессии У по x (s) , вообще говоря, зависящие от конкретного сочетания условий эксперимента, т. е. от вектора Fi= (fi1, . fik); ei(Fi)- случайные ошибки, имеющие нулевые средние значения. Основное содержание К. а.- в построении статистич. оценок для неизвестных параметров q1, . qk; b1, . bp и статистич. критериев для проверки различных гипотез относительно значений этих параметров.

Если в модели (*) постулировать априори b1=. =bp=0, то получится модель дисперсионного анализа;если из (*) исключить влияние неколичественных факторов (положить q1=. =qk=0), то получится модель регрессионного анализа. Своим названием К. а. обязан тому обстоятельству, что в его вычислениях используются разбиения ковариаций величин У и Xточно так же, как в дисперсионном анализе используются разбиения суммы квадратов отклонений У.

Лит.:[1] Шеффе Г., Дисперсионный анализ, пер. с англ., М., 1963; [2] Кендалл М. Д ж., Стьюарт А., Многомерный статистический анализ и временные ряды, пер. с англ., М., 1976; [3] «Biometrics», 1957, v. 13, № 3.

Математическая энциклопедия. — М.: Советская энциклопедия . И. М. Виноградов . 1977—1985 .

Смотреть что такое «КОВАРИАЦИОННЫЙ АНАЛИЗ» в других словарях:

Ковариационный анализ — Ковариационный анализ раздел анализа данных, ставящий своей целью определить модель связи между зависимой величиной и набором количественных и качественных величин. Таким образом, он является как бы синтезом регрессионного и дисперсионного… … Википедия

ковариационный анализ — 3.5 ковариационный анализ en analysis of covariance Метод оценивания и испытания эффектов обработок, fr analyse de covariance когда сопутствующие факторы влияют на отклик… … Словарь-справочник терминов нормативно-технической документации

Ковариационный анализ — дополнение к дисперсионному анализу, используемое в случаях, когда нельзя полностью контролировать одну или более переменных. Это позволяет осуществить “статистический контроль” над неконтролируемыми переменными таким образом, что нормальные… … Энциклопедический словарь по психологии и педагогике

Ковариационный анализ (analysis of covariance) — К. а. тесно связанный с дисперсионным анализом статистический метод, в к ром зависимая переменная статистически корректируется на основе связанной с ней дополнительной информ., с тем чтобы устранить вносимую извне изменчивость и т. о. повысить… … Психологическая энциклопедия

Читать еще:  Способы группировки информации в экономическом анализе

КОВАРИАЦИОННЫЙ АНАЛИЗ (ANCOVA) — Дополнение к дисперсионному анализу, применяемое, когда нельзя полностью контролировать одну или более переменных. Процедура позволяет осуществлять статистический контроль над неконтролируемыми переменными так, что нормальные методы анализа могут … Толковый словарь по психологии

Многовариационный ковариационный анализ (MANCOVA) — расширенный вариант ковариационного анализа, применяемый в ситуациях, когда анализируются многочисленные зависимые переменные … Энциклопедический словарь по психологии и педагогике

МНОГОВАРИАЦИОННЫЙ КОВАРИАЦИОННЫЙ АНАЛИЗ (MANCOVA) — Расширенный вариант ковариационного анализа, применяемый в ситуациях, когда анализируются многочисленные зависимые переменные … Толковый словарь по психологии

АНАЛИЗ ДИСПЕРСИОННЫЙ — статистический метод обработки результатов наблюдений, зависимых одновременно от нескольких факторов, анализ этих наблюдений, выбор более важных факторов и оценка их влияния. Если имеется выборка ξ1, . . ., ξn из генеральной… … Геологическая энциклопедия

АНАЛИЗ КОВАРИАЦИОННЫЙ — см. Анализ дисперсионный, Анализ факторный. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

АНАЛИЗ МНОГОМЕРНЫЙ СТАТИСТИЧЕСКИЙ — раздел статистики математической (см.), посвященный математич. методам, направленным на выявление характера и структуры взаимосвязей между компонентами исследуемого многомерного признака (см.) и предназначенным для получения научн. и практич.… … Российская социологическая энциклопедия

Ковариационный анализ

Материал из MachineLearning.

Ковариационный анализ — совокупность методов математической статистики, относящихся к анализу моделей зависимости среднего значения некоторой случайной величины одновременно от набора (основных) качественных факторов и (сопутствующих) количественных факторов . Факторы задают сочетания условий, при которых были получены наблюдения , и описываются с помощью ндикаторных переменных, причем среди сопутствующих и индикаторных переменных могут быть как случайные, так и неслучайные (контролируемые в эксперименте).

Если случайная величина является вектором, то говорят о многомерном ковариационном анализе.

Ковариационный анализ часто применяют перед дисперсионным анализом, чтобы проверить гомогенность (однородность, представительность) выборки наблюдений по всем сопутствующим факторам.

Содержание

Примеры задач

Пример 1: Пусть у нас имеется 3 метода обучения арифметики и группа студентов. Группа разбивается случайным образом на 3 подгруппы для обучения одним из методов. В конце курса обучения студенты проходят общий тест, по результатам которого выставляются оценки. Также для каждого студента имеется одна или несколько характеристик (количественных) их общей образованности.

Требуется проверить гипотезу об одинаковой эффективности методик обучения.

Пример 2: Для сравнения качества нескольких видов крахмала (пшеничного, картофельного …) был проведён эксперимент, в котором измерялась прочность крахмальных плёнок. Также для каждого испытания измерена толщина использовавшейся крахмальной плёнки.

Требуется проверить гипотезу об одинаковом качестве различного крахмала.

Пример 3: Пусть для нескольких различных школ были собраны отметки их учеников, полученные на общем для всех экзамене. Также для каждого из учеников известны отметки, полученные ими по другим экзаменам (например, вступительным в школу).

Требуется проверить гипотезу об одинаковом качестве образования в школах.

Постановка задачи

Основные теоретические и прикладные проблемы ковариационного анализа относятся к линейным моделям. В частности, если анализируются наблюдений с сопутствующими переменными , возможными типами условий эксперимента , то линейная модель соответствующего ковариационного анализа задается уравнением:

где , индикаторные переменные равны 1, если -е условие эксперимента имело место при наблюдении , и равны 0 в противном случае. Коэффициенты определяют эффект влияния -го условия, — значение сопутствующей переменной , при котором получено наблюдение , — значения соответствующих коэффициентов регрессии по , — независимые случайные ошибки с нулевым математическим ожиданием.

Приведённая формула задаёт линейную модель однофакторного ковариационного анализа с независимыми переменными и уровнями фактора. При включении в модель дополнительных факторов в правой части уравнения появятся слагаемые, отвечающие за эффекты уровней вновь введённых в модель факторов.

Замечание: коэффициенты регрессии в приведённой формуле не зависят от качественных факторов. Это включает предположение, что линейная зависимость имеет одинаковые коэффициенты для каждого значения качественного фактора.

Основное назначение ковариационного анализа — использование в построении статистических оценок ; и статистических критериев для проверки различных гипотез относительно значений этих параметров. Если в модели постулировать априори , то получится модель дисперсионного анализа, если же исключить влияние неколичественных факторов (положить ), то получится модель регрессионного анализа.

Гипотезы и критерии ковариационного анализа

Основной гипотезой, проверяемой в ковариационном анализе, является

В случае одной сопутствеющей переменной ( ) эту гипотезу можно интерпретировать следующим образом. По предположениям линейной модели ковариационного анализа для каждого уровня фактора кривые регрессии зависимой переменной на сопутствующую переменную параллельны. Гипотеза предполагает, что эти кривые совпадают.

Например, в задаче о сортах крахмала эта гипотеза утверждает, что различие прочности плёнок обусловлено исключительно различными значениями случайной переменной «толщина плёнки».

Обычно эта гипотеза проверяется с помощью критерия Фишера в результате сведения поставленной задачи к задачам дисперсионного анализа (см. [3] параграф 6.2).

Ссылка на основную публикацию
ВсеИнструменты 220 Вольт
Adblock
detector
×
×