Business-insider.ru

Про деньги в эпоху кризиса
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Анализ автокорреляционной функции позволяет увидеть

Корреляционный анализ. Функция автокорреляции

Еще одним методом выделения аномального эффекта является корреляционный анализ. Корреляционный анализ — метод обработки данных, заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей. В данной работе для определения аномального эффекта буде применятся функция автокорреляции.

Автокорреляционная функция (АКФ) показывает связь сигнала с копией самого себя, смещенной на величину τ. АКФ описывается интегралом:

[13]

Механизм определения аномального эффекта в данной работе принципиально не отличается от механизма, описанного в работе 2. Это означает, что, прежде всего необходимо выделить региональный фон.

Для определения регионального фона необходимо рассчитать функцию автокорреляции для модельного сигнала, определить радиус корреляции и провести осреднение исходного сигнала скользящим окном, кратным радиусу корреляции.

Прежде чем начать расчет АКФ, из модельного сигнала необходимо удалить математическое ожидание m. Его можно определить по следующей формуле:

[14]

где Fi(t) – значения функции, N – общее количество значений функции.

После удаления из сигнала математического ожидания необходимо рассчитать АКФ, используя формулу 13 и определить радиус корреляции. Радиус корреляции может быть определен графически. Для этого необходимо отнормировать значения АКФ и построить график по нормированным значениям.

Для нормирования используется следующая формула:

[15]

где fn – нормированное значение функции, fi – текущее значение функции, а fmax – максимальное значение функции.

Радиус корреляции определяется по первому пересечению линии Y= 0.1*fn max и графика нормированной АКФ. Пример определения радиуса корреляции приведен на рисунке 9.

После определения радиуса корреляции необходимо подобрать размер скользящего окна для осреднения. Подбор производится экспериментальным путем. Исходный сигнал усредняется сначала окном равным двум радиусам корреляции R, а затем размер окна увеличивается, до тех пор, пока полностью не сгладится аномальный эффект, как показано на рисунке 10.

После сглаживания аномального эффекта, полученный график и представляет собой региональный фон.

После выделения регионального фона необходимо воспользоваться формулой 11 и определить аномальный эффект.

График аномальных значений представлен на рисунке 11.

Как видно, полученный аномальный эффект несколько отличается от того, что был получен ранее (рис. 6), тем не менее, оба эффекта имеют достаточно выраженные сходные черты, а значит характер аномалии сохраняется. Сравнением аномальных эффектов, полученных в работах 2 и 4 можно руководствоваться для проверки правильности вычислений.

1. Используя данные, ранее выполненных работ, рассчитать АКФ для модельного сигнала.

2. Определить радиус корреляции

3. Провести подбор размеров скользящего окна и провести сглаживание исходного сигнала.

4. Рассчитать аномальный эффект.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9972 — | 7756 — или читать все.

Автокорреляционная функция и ее применение

Автокорреляционная функция (АКФ) характеризует степень корреляционной связи между отдельными значениями наблюдений, представленными в виде случайного процесса и расположенными на некотором удалении друг от друга.

Применительно к геофизическим данным АКФ представляет характеристику связи между значениями поля, отстоящими друг от друга на m— дискретов, т.е. дискретов по x или по t. АКФ является функцией аргумента или , где — шаг по профилю, — шаг по трассе сейсмограммы, т.е. .

АКФ рассчитывается по формуле:

(4.1)

где — значение поля в i-той точке профиля (трассы, скважины); n – число точек наблюдений; m – интервал, принимающий последовательно значения , которые выражают расстояния между значениями поля и ; — среднее значение поля по профилю, трассе и т.д.

Для m=1, сумма в выражении 4.1 представляет собой сумму произведений центрированных[3], значений поля соседних точек профиля:

(4.2)

здесь , то есть центрированное значение поля на i — ом пикете профиля;

Для m=2, сумма в выражении 4.1 представляет собой сумму произведений центрированных значений поля, удаленных друг от друга на один пикет:

(4.3)

Для любого m= k , (k =0.

4.Два случайных процесса F1=1, f2,…..fn> и F2=1, kf2,…..kfn> отличающиеся только постоянным множителем k, имеют один и тот же вид нормированной автокорреляционной функции Rн(m).

5.Два случайных процесса F1=1, f2,…..fn> и F2=1+k, f2+k,…..fn+k> смещенные относительно друг друга на постоянную величину k, имеют один и тот же вид нормированной автокорреляционной функции Rн(m).

Читать еще:  Качественный анализ кадрового состава

Анализируя выражения 4.1 и 4.5 можно сделать вывод о том, что нормированные значения автокорреляционной функции Rн.(m) есть не что иное, как коэффициент корреляции, рассчитанный для точек удаленных друг от друга на m пикетов. Таким образом, значения корреляционной функции, для конкретного аргумента m показывает насколько значения поля, удаленные друг от друга на m пикетов, коррелированны[5] между собой. Так, если R(5)=0.85, то это свидетельствует о том, что значения поля, удаленные друг от друга на 5 пикетов, в целом, достаточно коррелированны, если R(9)=0.05, то значения поля удаленные на 9 пикетов практически независимы (некоррелированны). Наконец, если, например, R(13)=-0.9, то между значениями поля, отстоящими друг от друга на 13 пикетов, существует сильная обратная корреляционная связь. Случайный процесс, для которого даже при единичном смещении R(1)

На рисунке 4.1 приведены примеры расчета нормированных автокорреляционных функций для различных случайных процессов, близких по форме к константе (1), синусоиде (2), абсолютно некоррелируемому процессу (3), квадратичной (4) и линейной (5) функциям. Из второго рисунка следует, что автокорреляционная функция периодического процесса является также периодической. При этом период автокорреляционной функции совпадает с периодом процесса. Для абсолютно некоррелируемого сигнала значения автокорреляционной функции близки к нулю при любых значениях аргумента, отличных от нуля.

Рис.4.1. Некоторые реализации случайных процессов (слева) и их автокорреляционные функции (справа). 1-константа, 2-косинусоида, осложненная помехой, 3- абсолютно некоррелируемый сигнал или «белый шум», 4 – парабола, 5-линейная функция.

Нормированные значения автокорреляционной функции постоянного процесса тождественно равны единице, так как при любых смещениях m значения случайного процесса полностью совпадают, то есть абсолютно коррелируемы.

По АКФ определяется такой важный атрибут, как интервал корреляции. Под интервалом или радиусом корреляции понимают такое расстояние между значениями поля r, начиная с которого значения поля и можно считать некоррелированными, а при нормальном законе распределения – независимыми между собой. Для оценки интервала корреляции используются разные эвристические приемы. Наиболее распространенным приемом является оценка величины r по заданному значению , где . При этом r принимается равным аргументу АКФ, m, начиная с которого выполняется соотношение .

Для оценки интервала корреляции используются также соотношения:

или .

На практике, радиус корреляции оценивают по минимальному значение аргумента m, при котором автокорреляционная функция первый раз пересекает ось абсцисс.

Форма АКФ и интервал корреляции используются при решении различных задач обработки геофизических данных, из них выделим следующие:

1) Оценка корреляционных свойств сигналов и помех. При отсутствии корреляции между сигналом помехой , что обычно постулируется, т.е. появление сигнала не зависит от помехи, АКФ представляется суммой АКФ сигнала и АКФ помехи, поскольку :

Из этого выражения следует, что при малой интенсивности помехи по сравнению с интенсивностью сигнала АКФ представляет оценку корреляционных свойств сигнала, и, наоборот, на интервале, где отсутствует сигнал, АКФ оценивает свойства помехи;

2) АКФ сигнала и помех является основой расчета всех оптимальных фильтров, рассматриваемых в главе VII;

3) При совпадении формы сигнала и формы АКФ помехи никакая дополнительная обработка по их разделению не внесет ничего нового, поскольку при этом частотные диапазоны сигнала и помехи полностью перекрываются между собой;

4) Разделение на однородные в статистическом отношении участки с целью геологического картирования. С этой целью используются обычно одновременно среднее значение, дисперсия и интервал корреляции, рассчитываемые в скользящих окнах;

5) Оценка разрешающей способности сейсмической записи по величине отношения , где Т — период записи. При Н, близком к единице, разрешающая способность велика, при Н£0,5 — низкая;

6) Использование интервала корреляции для оценки глубины залегания h объектов по потенциальным полям .

На этом простом соотношении между глубиной h и интервалом корреляции r, точно выполняемом для объектов в виде цилиндров бесконечного простирания, основаны приемы гравитационного, предложенного А.М.Петрищевским, и корреляционного, предложенного А.В.Петровым, зондирований потенциальных полей;

7) Оценка длительности реализации, например, длины профиля, для которой рассчитывается АКФ. В общем случае дисперсия АКФ определяется выражением , из которого следует возможность оценивания длительности самой реализации n.

Дата добавления: 2015-06-26 ; Просмотров: 6432 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Автокорреляционная функция Примеры расчётов (стр. 1 из 3)

Санкт-Петербургский институт машиностроения

по дисциплине Статистика

Автокорреляционная функция. Примеры расчётов

Содержание

Введение

Периодическая зависимость представляет собой общий тип компонент временного ряда. Можно легко видеть, что каждое наблюдение очень похоже на соседнее; дополнительно, имеется повторяющаяся периодическая составляющая, это означает, что каждое наблюдение также похоже на наблюдение, имевшееся в том же самое время период назад. В общем, периодическая зависимость может быть формально определена как корреляционная зависимость порядка k между каждым i-м элементом ряда и (i-k)-м элементом. Ее можно измерить с помощью автокорреляции (т.е. корреляции между самими членами ряда); k обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если ошибка измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые k временных единиц [7, 153].

Читать еще:  Анализ конкретных ситуаций

Периодические составляющие временного ряда могут быть найдены с помощью коррелограммы. Коррелограмма (автокоррелограмма) показывает численно и графически автокорреляционную функцию (AКФ), иными словами коэффициенты автокорреляции для последовательности лагов из определенного диапазона. На коррелограмме обычно отмечается диапазон в размере двух стандартных ошибок на каждом лаге, однако обычно величина автокорреляции более интересна, чем ее надежность, потому что интерес в основном представляют очень сильные[1] автокорреляции [6, 207].

При изучении коррелограмм следует помнить, что автокорреляции последовательных лагов формально зависимы между собой. Рассмотрим следующий пример. Если первый член ряда тесно связан со вторым, а второй с третьим, то первый элемент должен также каким-то образом зависеть от третьего и т.д. Это приводит к тому, что периодическая зависимость может существенно измениться после удаления автокорреляций первого порядка, (т.е. после взятия разности с лагом 1).

1. Дать основные теоретические сведения

2. Дать примеры расчета АКФ

Глава 1. Теоретические сведения

Коэффициент автокорреляции и его оценка

Для полной характеристики случайного процесса недостаточно его математического ожидания и дисперсии. Еще в 1927 г. Е.Е.Слуцкий ввел для зависимых наблюдений понятие «связанного ряда»: вероятность возникновения на определенном месте тех или иных конкретных значений зависит от того, какие значения случайная величина уже получила раньше или будет получать позже. Иными словами, существует поле рассеяния пар значений x(t), x(t+k) временного ряда, где k — постоянный интервал или задержка, характеризующее взаимозависимость последующих реализаций процесса от предыдущих. Теснота этой взаимосвязи оценивается коэффициентами автоковариации –

g (k) = E[(x(t) — m)(x(t + k) — m)] –

r (k) = E[(x(t) — m)(x(t + k) — m)] / D ,

где m и D — математическое ожидание и дисперсия случайного процесса. Для расчета автоковариации и автокорреляции реальных процессов необходима информация о совместном распределении вероятностей уровней ряда p(x(t1),x(t2)). Однако для стационарных процессов, находящихся в определенном статистическом равновесии, это распределение вероятностей одинаково для всех времен t1, t2 , разделенных одним и тем же интервалом. Поскольку дисперсия стационарного процесса в любой момент времени (как в t, так и в t + k) равна D = g (0), то автокорреляция с задержкой k может быть выражена как [5, 312]

откуда вытекает, что r (0) = 1. В тех же условиях стационарности коэффициент корреляции r (k) между двумя значениями временного ряда зависит лишь от величины временного интервала k и не зависит от самих моментов наблюдений t. [2]

В статистике имеется несколько выборочных оценок теоретических значений автокорреляции r (k) процесса по конечному временному ряду из n наблюдений. Наиболее популярной оценкой является нециклический коэффициент автокорреляции с задержкой k (Андерсон, 1976; Вайну, 1977):

Наиболее важным из различных коэффициентов автокорреляции является первый — r1, измеряющий тесноту связи между уровнями x(1), x(2) . x(n -1) и x(2), x(3), . x(n).

Распределение коэффициентов автокорреляции неизвестно, позтому для оценки их достоверности иногда используют непараметрическую теорию Андерсона (1976), предложившего статистику [4, 112]

которая при достаточно большой выборке распределена нормально, имеет нулевую среднюю и дисперсию, равную единице (Тинтнер, 1965).

Автокорреляционные функции

Последовательность коэффициентов корреляции rk, где k = 1, 2, . n, как функция интервала k между наблюдениями называется автокорреляционной функцией (АКФ).

Вид выборочной автокорреляционной функции тесно связан со структурой ряда.

· Автокорреляционная функция rk для «белого шума», при k >0, также образует стационарный временной ряд со средним значением 0.

· Для стационарного ряда АКФ быстро убывает с ростом k. При наличии отчетливого тренда автокорреляционная функция приобретает характерный вид очень медленно спадающей кривой [3, 268].

· В случае выраженной сезонности в графике АКФ также присутствуют выбросы для запаздываний, кратных периоду сезонности, но эти выбросы могут быть завуалированы присутствием тренда или большой дисперсией случайной компоненты.

Читать еще:  Методология проведения анализа

Рассмотрим примеры автокорреляционной функции:

· на рис. 1 представлен график АКФ, характеризующегося умеренным трендом и неясно выраженной сезонностью;

· рис. 2 демонстрирует АКФ ряда, характеризующегося феноменальной сезонной детерминантой;

· практически незатухающий график АКФ ряда (рис. 3) свидетельствует о наличии отчетливого тренда.

В общем случае можно предполагать, что в рядах, состоящих из отклонений от тренда, автокорреляции нет. Например, на рис. 4 представлен график АКФ для остатков, полученных от сглаживания ряда, очень напоминающий процесс «белого шума». Однако нередки случаи, когда остатки (случайная компонента h ) могут оказаться автокоррелированными, например, по следующим причинам [1, 172]:

· в детерминированных или стохастических моделях динамики не учтен существенный фактор[3]

· в модели не учтено несколько несущественных факторов, взаимное влияние которых оказывается существенным вследствие совпадения фаз и направлений их изменения;

· выбран неправильный тип модели (нарушен принцип контринтуитивности);

· случайная компонента имеет специфическую структуру.

Критерий Дарбина-Уотсона

Критерий Дарбина-Уотсона (Durbin, 1969) представляет собой распространенную статистику, предназначенную для тестирования наличия автокорреляции остатков первого порядка после сглаживания ряда или в регрессионных моделях.

Численное значение коэффициента равно

d = [(e(2)-e(1)) 2 + . + (e(n)-e(n -1)) 2 ]/[e(1) 2 + . + e(n) 2 ],

где e(t) — остатки.

Возможные значения критерия находятся в интервале от 0 до 4, причем табулированы его табличные пороговые значения для разных уровней значимости (Лизер, 1971).

Значение d близко к величине 2*(1 — r1), где r — выборочный коэффициент автокорреляции для остатков. Соответственно, идеальное значение статистики — 2 (автокорреляция отсутствует). Меньшие значения соответствуют положительной автокорреляции остатков, большие – отрицательной [2, 193].

Например, после сглаживания ряда ряд остатков имеет критерий d = 1.912. Аналогичная статистика после сглаживания ряда — d = 1.638 — свидетельствует о некоторой автокоррелированности остатков.

Глава 2. Примеры практических расчетов с помощью макроса Excel «Автокорреляционная функция»

Автокорреляция, Коэффициент автокорреляции

При наличии во временном ряде тренда и сезонных колебаний значения любого последующего уровня ряда зависят от предыдущих. Корреляционная зависимость между последовательными уровнями временного ряда в эконометрике называется автокорреляцией уровней рада.

Количественно ее можно найти с помощью коэффициента корреляции между уровнями начального временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов по времени.

Определим коэффициент корреляции между рядами уt и yt-1.
Формула для расчета коэффициента корреляции можно представить в виде:

Коэффициент автокорреляции

В качестве переменной X рассматривают ряд у2, у3, …, у6 в качестве переменной у — ряд у1, у2, …, у5. Тогда приведенная формула для расчета коэффициента корреляции примет вид

Эта величина — коэффициент автокорреляции первого порядка, так как он определяет зависимость между соседними уровнями ряда t и t-1

Аналогично определяют коэффициенты автокорреляции второго и более высоких порядков.

Число периодов, по которым определяется коэффициент автокорреляции, называют лаг автокорреляции. С ростом лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Считается что лаг должен определяться отношением n/4 — количество наблюдений деленных на 4.

Свойства коэффициента автокорреляции

По коэффициенту автокорреляции судят о наличии линейной тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (степенную функцию или экспоненту), коэффициент автокорреляции может быть меньше 0,7.

По знаку коэффициента автокорреляции нельзя делать судить о возрастающем или убывающем направлении связи в ряду.

Коррелограмма

Последовательность коэффициентов автокорреляции уровней первого, второго и других порядков называется автокорреляционной функцией временного ряда. График значений коэффициентов автокорреляции разных порядков называют коррелограммой.

Анализ автокорреляционной функции и коррелограммы позволяет найти лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями временного ряда наиболее тесная.

Анализ коэффициентов автокорреляции

Если максимальным оказался коэффициент автокорреляции первого порядка, временной ряд содержит только тенденцию (тренд).

Если максимальным оказался коэффициент автокорреляции порядка n, ряд содержит циклические колебания с периодичностью в n моментов времени.

Если ни один из коэффициентов автокорреляции не является значимым (близок к 0), можно сказать, что либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит нелинейную тенденцию, для выявления которой проводят дополнительный анализ.

Источник: Эконометрика: Учебник / Под ред. И.И. Елисеевой. – М: Финансы и статистика, 2002. – 344 с.

Для перехода на страницу выполнения контрольных по эконометрике жмите сюда

Ссылка на основную публикацию
ВсеИнструменты 220 Вольт
Adblock
detector
×
×